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Propagation of two-dimensional transient waves in multilayered viscoelastic media is
investigated. The multilayered medium consists of N di!erent isotropic, homogeneous and
linearly viscoelastic layers with more than one discrete relaxation time. The top surface of
the layered medium is subjected to dynamic in-plane surface tractions; whereas, the lower
surface is free or "xed. A numerical technique which combines the Fourier transform with
the method of characteristics is employed to obtain the solutions. The numerical results are
displayed in curves denoting the variations of the stress and displacement components with
time at di!erent locations. These curves reveal clearly the scattering e!ects caused by the
re#ections and refractions of waves at the boundaries and at the interfaces of the layers. The
curves also display the e!ects of viscous damping in the wave pro"les. By suitably adjusting
the material constants, curves for the cases of elastic layers and viscoelastic layers with one
relaxation time (standard linear solid) are also obtained. The curves further show that the
numerical technique applied in this study is capable of predicting the sharp variations in the
"eld variables in the neighborhood of the wave fronts. Solutions for some special cases,
including Lamb's problem for the elastic half-space, are obtained and compared with the
existing solutions in the literature; very good agreement is found.

( 2001 Academic Press
1. INTRODUCTION

The study of elastic wave propagation in layered media has been a subject of extensive
investigation in the literature. It is of considerable importance in a variety of applications
ranging from seismology to laminated composites used in aircraft, spacecraft and other
engineering structures, and to non-destructive evaluation of laminated composites.

Early analytical treatment of the subject can be found in the books by Ewing et al. [1]
and Brekhovskikh [2]. Approximate models have been developed to study the propagation
of harmonic and transient waves which yield satisfactory results when the thicknesses of the
layers are small compared to the wavelengths of the propagating waves [3}7]. Harmonic
wave propagation in layered elastic media with isotropic and anisotropic layers has also
been investigated by more exact methods of elasticity theory which are valid for any
wavelength [8}12]. Transient axisymmetric wave propagation in weakly coupled layered
structures is investigated in references [13, 14]. Two di!erent computational approaches,
one based on the numerical inversion of Fourier and Hankel transforms and the other the
"nite element method, are employed in reference [14]. Rizzi and Doyle [15] developed
a spectral element approach based on fast Fourier transform and applied it to study
transient waves in elastic layered solids. The transfer matrix method was employed by
Kundu and Mal [16] to study wave propagation in multilayered solids with isotropic layers
0022-460X/01/300837#22 $35.00/0 ( 2001 Academic Press
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and by Mal [17] in laminated composites with anisotropic layers, namely transversely
isotropic layers, subjected to periodic surface loads. A multiple transform technique coupled
with a matrix method was used to investigate the elastodynamic response of
a uni-directional composite laminate to concentrated surface loads in references [18, 19]
and multilayered composite laminates consisting of transversely isotropic layers with
arbitrarily oriented symmetry axes to dynamic surface loads in reference [20]. The
transversely isotropic layers are assumed to be dissipative and the dissipative property is
modelled approximately through the introduction of a frequency-dependent damping
function in reference [20]. A generalized Thomson}Haskell matrix method was proposed
by Jianfeng and Youming [21] for modelling elastic wave propagation in strati"ed media
with laterally homogeneous and laterally inhomogeneous layers. Transient waves excited
by impact loads in anisotropic laminated plates were investigated by Liu et al. [22, 23] by
employing a numerical method which combines the "nite element method and the Fourier
transform technique. Modal analysis is introduced in the "nite element method and fast
Fourier transform algorithm is used in the inversion of the Fourier transforms in references
[22, 23]. Harmonic and transient wave propagation in elastic layered media with isotropic
and anisotropic layers are also investigated in the books by Tygel and Hubral [24],
Achenbach [25], Miklowitz [26], Nayfeh [27] and Van der Hijden [28]. Elegant analytical
and numerical techniques based on the Green function formulations, integral transforms,
inversion of integral transforms by Cagniard-de Hoop method and asymptotic techniques
can be found in these books [24}28].

Compared to the extensive literature on elastic wave propagation in multilayered elastic
media, relatively less work can be found on transient wave propagation in viscoelastic
layered media. Most of the existing literature on transient waves in viscoelastic laminates
has focused on one-dimensional wave propagation normal to the layering of the laminate
[29}32]. A two-dimensional problem concerning the propagation of coupled P and S waves
parallel to the layers in a semi-in"nite plate consisting of a linearly viscoelastic layer
sandwiched between two identical linearly elastic layers was investigated by Nkemzi and
Green [33]. Xu and Mal [34] calculated the in-plane Green function for a layered
viscoelastic solid.

In this study, propagation of two-dimensional transient waves in viscoelastic layered
media consisting of N di!erent layers is investigated. The layers of the multilayered medium
are isotropic, homogeneous and linearly viscoelastic with discrete relaxation spectra
involving two time constants. By suitably adjusting the material constants, the case of
multilayered elastic media is treated as a special case as well.

A numerical technique which combines the Fourier transform with the method of
characteristics is employed to obtain the solution. The method of characteristics has been
employed e!ectively in investigating one-dimensional transient wave propagation problems
in layered media. Among many contributions in this area, we can mention those of Chou
and Greif [35] in layered elastic media, of Turhan and CalaymH r [36] in viscoelastic layered
media with layers modelled as standard linear solid, and of Turhan et al. [37] in
thermoelastic layered media. In multi-dimensional wave propagation problems, however,
the construction of the solution by the method of characteristics becomes di$cult and
impractical. In this study, the shortcomings of the method of characteristics for
multi-dimensional wave propagation analysis are eliminated by employing a numerical
technique which combines the Fourier transform technique with the one-dimensional
method of characteristics. Such a numerical technique was "rst introduced by Mengi and
TanrmHkulu [38] and later applied by TanrmHkulu et al. [39] to assess an approximate theory
developed for plates and layered composites [40]. Because of the inclusion of the method of
characteristics in the analysis, the numerical technique employed is capable of describing
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the sharp variations of the disturbances in the neighborhood of the wave fronts. Hence, it
can be used conveniently in multi-dimensional transient wave propagation analyses.

2. FORMULATION OF THE PROBLEM

The multilayered medium considered in this study is of thickness H and consists of
N di!erent layers; see Figure 1. It is referred to a Cartesian co-ordinate system, x

i
, in which

the x
1
x
3
- plane coincides with the top surface of the layered medium and the x

2
-axis is

directed downwards. The top surface of the layered medium is subjected to dynamic
in-plane surface tractions; whereas, the lower surface is free, "xed or subjected to in-plane
surface tractions as well. The surface tractions can be normal stresses or in-plane shear
stresses. In the formulation, it is assumed that the surface tractions are arbitrary functions of
x
1

and time t; but they are uniform and extend to in"nity in the x
3

direction. The layers of
the composite medium are assumed to be perfectly bonded to each other. Furthermore, the
layered medium is assumed to be initially at rest.

The problem is a two-dimensional plane strain problem; hence, the displacement
component u

3
vanishes identically and the displacement components u

1
and u

2
are

functions of x
1
, x

2
and t: i.e., u

1
"u

1
(x

1
, x

2
, t) and u

2
"u

2
(x

1
, x

2
, t). Thus, the stress

equations of motion for a typical layer can be written as
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where q
11

, q
12

, q
22

are the stress components, v
1
"Lu

1
/Lt and v

2
"Lu

2
/Lt are the

components of the particle velocity in the x
1

and x
2

directions, respectively, and o is the
mass density of the typical layer considered.

The layers of the multilayered medium are assumed to be isotropic and linearly
viscoelastic for which the constitutive equations can be written as [41]
Figure 1. Layered medium subjected to in-plane surface tractions.
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in which a
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, b
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, c

m
, d

m
are speci"ed constants for a typical layer and Dm"Lm/Ltm. In the

above equations and in the developments that will follow, when it is appropriate, the
indicial notation and all of the rules that apply to its use are employed. In equations (2.2),
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are the components of the stress and strain deviators de"ned by
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where d
ij

is the Kronecker delta. If the initial values of q@
ij
, e@
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, q
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, e
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satisfy certain

conditions [41] the constitutive equations, equations (2.2), can be written in terms of
integral equations as
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where G
1
(t), G

2
(t) are the shear and bulk relaxation functions, respectively, and x is the

position vector of the particle considered. The relaxation functions in equations (2.5) can be
expressed in the forms
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where k"G
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(0)/2, (2
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(0)/3, q
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, f
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are some positive constants and a
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, b
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are

positive non-dimensional constants such that
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"1. (2.7)

Here, it may be noted that equations (2.6) represent the generalized Maxwell model [42];
where q

m
and f

m
are retardation (relaxation) times, and a

m
and b

m
are the corresponding

relaxation coe$cients for the shear and bulk moduli, respectively. The inclusion of more
terms in equations (2.6) would facilitate "tting the relaxation functions given in these
equations to experimental data. It may also be observed that, in view of the conditions given
in equations (2.7), k and (2

3
k#j) in equations (2.6) represent the instantaneous values of the

shear and bulk relaxation functions respectively.
In this study, the viscoelastic solid is modelled with n"2 in equations (2.3) and (2.6).

Constitutive equations of the same form were used by Wegner and Haddow [43], Jiang and
Haddow [32] and Wegner [44] in various one-dimensional transient wave propagation
problems in viscoelastic media. Equations (2.3) and (2.6) with n"1 represent the
constitutive equations for a standard linear solid.
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There are two reasons for choosing n"2 here. First, taking n'2 complicates the
numerical analysis considerably, which is, as mentioned in &&Introduction'', carried out by
using a special method combining the method of characteristics with Fourier transform
technique. Secondly, one can think that the constitutive equations (equations (2.2), (2.3) and
(2.6)) with n"2 would be adequate to represent the response of viscoelastic materials, in
particular, of thermoset and thermoplastic polymers, in the region around the
glass-transition temperature.

The constants in equations (2.3) and (2.6) with n"2 are related according to [43]
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The non-zero strain components for the plane strain problem considered here are related
to the displacement components u

1
and u

2
through

e
11

"

Lu
1

Lx
1

, e
22
"

Lu
2

Lx
2

, e
12
"1

2A
Lu

1
Lx

2

#

Lu
2

Lx
1
B . (2.9)

The formulation of the problem is completed by stating the boundary, initial and
interface conditions. The boundary conditions at the top surface x

2
"0 of the multilayered

medium are
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where p(x
1
, t) and s(x

1
, t) are prescribed functions of x

1
and t. The bottom surface x

2
"H is

either free of surface tractions or "xed. Hence, the boundary conditions can be written as
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In the method employed in this paper, note that other alternatives for boundary conditions,
such as in-plane surface tractions on the bottom surface, or mixed}mixed boundary
conditions, i.e., one component of displacement and the other component of the in-plane
surface tractions, can be handled with equal ease on both surfaces. The multilayered
medium is assumed to be initially at rest; hence, all the "eld variables are zero at t"0. The
layers of the multilayered medium are assumed to be perfectly bonded to each other. Hence,
the interface conditions imply that q

22
, q

12
and u

1
, u

2
are continuous across the interfaces of

the layers. The formulation of the problem is thus complete.
The governing "eld equations, equations (2.1), (2.2) and (2.9), will now be applied to each

layer and the solutions will be required to satisfy the continuity conditions at the interfaces,



842 I. ABU ALSHAIKH E¹ A¸.
the boundary conditions at the top and bottom surfaces, equations (2.10)-(2.13), and
quiescent initial conditions.

3. SOLUTION OF THE PROBLEM

The solution is obtained by employing a numerical technique which combines the
Fourier transform with the method of characteristics. The technique involves "rst the
application of the Fourier transform to the governing equations over the space variable x

1
,

then the integration of the resulting one-dimensional hyperbolic equations by the method of
characteristics, and "nally inverting the solution back into real space. For this purpose, one
can "rst write the constitutive equations for the typical layer considered, equations (2.2), in
view of equations (2.3) and (2.4) with n"2 and a
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Equations (2.1) and (3.1)}(3.3) constitute a system of "rst order governing partial
di!erential equations which can be written in matrix form as
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and U is a 20-dimensional column vector containing the unknowns,
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where T designates the transpose. In equation (3.4), a comma denotes partial di!erentiation:
i.e.,
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To apply the numerical technique stated above, one "rst takes the Fourier transform of
the system of governing equations, equation (3.4), with respect to x

1
. This eliminates the

dependence of the "eld variables on x
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, and the resulting transformed equations can be

written in the form of a system of "rst order partial di!erential equations as
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In equations (3.12), i is the imaginary number and k is the Fourier transform parameter
which corresponds to the wave number for the x

1
direction.

The Fourier transforms of the boundary conditions, equations (2.10)}(2.13), with respect
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The Fourier transforms of the interface conditions require that the transformed
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interfaces of the layers. The quiescent initial conditions imply that all the transformed "eld
variables are zero at t"0. The formulation of the problem in the Fourier transform space is
now complete.

The second step of the procedure involves the determination of the solution in transform
space, which requires the solutions of equations (3.11) for each layer satisfying the boundary
conditions, equations (3.13)}(3.16), at the boundaries, the interface conditions at the
interfaces and the zero initial conditions. The system of governing equations, equations
(3.11), is hyperbolic, and the solution for a given value of the wave number (transform
parameter) k is constructed by employing the method of characteristics. In the method of
characteristics, the system of governing hyperbolic partial di!erential equations is
transformed into a system of ordinary di!erential equations, each of which is valid along
a di!erent family of characteristic lines. These equations, called the canonical equations, are
suitable to obtain the solution numerically by a step-by-step integration procedure in such
a way that the domain of dependence be preserved at the points of the solution domain. The
convergence and numerical stability of the method are well established; see the books by
Courant and Hilbert [45] and Whitham [46]. The details of the method of characteristics
can be found in references [45, 46]. The way it is applied in this study is, however, closer to
that applied by McNiven and Mengi [47].

The characteristic lines, along which the canonical equations are valid, are governed by
the characteristic equation

det(B!<A)"0, (3.17)

where <"dx
2
/dt. Equation (3.17) yields the eigenvalues <

i
(i"1}20), which are

<
1
"c

p
, <

2
"!c

p
, <

3
"c

s
, <

4
"!c

s
, <

i
"0 (i"5}20), (3.18)

where

c
p
"C

1

3o
(2b

2
#d

2
)D

1@2
"A

j#2k
o B

1@2
, c

s
"C

b
2

2oD
1@2

"(k/o)1@2. (3.19)

The characteristic manifold is thus composed of families of straight lines dx
2
/dt"<

i
(i"1}20). dx

2
/dt"<

1
"c

p
and dx

2
/dt"<

2
"!c

p
describe two characteristic families of

straight lines with slopes (c
p
) and (!c

p
), respectively, on the (x

2
!t) plane. dx

2
/dt"<

3
"c

s
and dx

2
/dt"<

4
"!c

s
describe another two families of straight lines with the slopes (c

s
)

and (!c
s
), whereas, dx

2
/dt"<

i
(i"5}20) de"ne straight lines parallel to the t-axis; see

Figure 2.
The canonical equations are determined from

lT
i
A

dUF

dt
#lT

i
G"0, (3.20)

which holds along dx
2
/dt"<

i
(i"1}20). In equation (3.20), d/dt denotes the total time

derivative along a characteristic line and l
i

is the left-hand eigenvector satisfying the



Figure 2. Network of characteristic lines on the (x
2
!t) plane.
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equation

BTl
i
"<

i
ATl

i
. (3.21)

In view of equations (3.5)}(3.7) and (3.18), the left-hand eigenvectors can be determined from
equation (3.21). When these left-hand eigenvectors together with A and G de"ned in
equations (3.5), (3.6) and (3.12) are substituted into equation (3.20), the canonical equations
can be obtained explicitly.

For a given value of k, these canonical equations can be integrated easily by using the
network shown in Figure 2, which is composed of characteristic lines for the N di!erent
layers. In this integration procedure, one uses the boundary conditions, equations
(3.13)}(3.16), along the boundary lines B

1
and B

2
, the interface conditions along the

interface lines I
j, j`1

( j"1,2,N!1), denoting the interface between the j th and ( j#1)th
layers, and zero initial conditions at t"0. The numerical procedure is started from the
x
2
-axis of the (x

2
!t) plane.

Finally, one inverts numerically the solution obtained in the Fourier space back into real
space by employing the inverse Fourier transform formula. This requires the construction of
the solution in the characteristic plane at the discrete wave number points (k

0
, k

1
, k

2
,2)

with an increment Dk. The number of wave number points and the cut-o! value of k to be
considered in the analysis should be chosen properly, since they play an important role in
achieving a desired accuracy in the solution. The inversion is performed conveniently by
using the fast Fourier transform (FFT) algorithm [48, 49]. It may be noted that the same
algorithm is also used for computing the Fourier transforms pF(k, t) and sF(k, t) of the
applied surface tractions.

4. NUMERICAL RESULTS AND DISCUSSIONS

First, several examples will be given to verify the validity of the numerical technique
employed in this study. The "rst example is the so-called Lamb's problem whose analytical



Figure 3. (a) Triangular load on half-space. (b) Time variation of the applied load.
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treatment was given by Lamb [50]. Lamb presented the solution for the horizontal surface
displacement up to the arrival of the S wave; whereas, for the vertical displacement, the
complete solution was given. Numerical treatment of this problem by employing the
time-domain boundary element method was given by Israel and Banerjee [51].

The elastic half-space (HS) is subjected to surface tractions whose spatial and temporal
distributions are triangular in the form shown in Figure 3, where f (x

1
)g(t) represents the

applied traction &&p'' in this and other examples of veri"cation. The triangular spatial and
temporal distributions are chosen to simulate a line load and a delta pulse in time. The
solution for this elastic half-space (HS) problem by the present method is obtained as
a special case of the general multilayered viscoelastic problem by suitably choosing the
material properties and the geometric parameters. The surface displacements due to the
vertical applied line load obtained by the present method at two di!erent locations are
presented in Figure 4 together with Lamb's solution. The normalization parameters used
are: x, the distance from the mid-point of the region over which the surface tractions are
applied; k, the shear modulus of the HS; c

p
and c

s
, the propagation velocities of the P and

S waves; and Q, the magnitude of the triangular pulse, i.e., the area under the curve in Figure
3(b). Here, note that as the point gets away from the region of applied surface tractions, i.e.,
as (x/b) increases, and as Dt gets smaller, the results converge towards Lamb's solution,
which is the consequence of the fact that, with increasing distance and decreasing Dt, the
load approaches a line load in space and a delta pulse in time. One can further note that the
curves in Figure 4 are very close to those given in reference [51], where the spatial
distribution was taken to be parabolic.

Now, a remark regarding the results in Figure 4 is in order. Lamb's solution contains
a jump at the wave front (which corresponds to the arrival of P waves); but, our solution
smooths out that jump. To explain this discrepancy, we note that the time and spatial
variations of the line load in Lamb's problem are Dirac delta functions. On the other hand,
in the present study these variations are taken as triangular as shown in Figure 3, which, we
think, smooths out the jump. We believe that the above-mentioned discrepancy stems from
the approximation of the time and spatial variations of the pulse, not from the method. In
fact, the 1-D problem which will be considered shortly shows that the method presented in
this study could predict the sharp variations at the wave front very well.

The second example for veri"cation is an elastic HS subjected to suddenly applied normal
surface tractions at t"0 with a trapezoidal distribution in the x

1
direction and a step

function with an initial ramp in time, see Figure 5. The HS is initially at rest. The loading is
de"ned by a"12)2 m, b"10)67 m and p

0
"6891)2 kN/m2 with a rise time of

t
r
"20]10~3 s. The elastic constants of the HS are k"599)6 MPa and j"257 MPa. The

dilatational and shear wave velocities are c
p
"835)2 m/s and c

s
"535)9 m/s. The curves for

the vertical displacement at the interior point G (45)74 , 3)05 m) and the normal stress q
22

at



Figure 4. Displacement at the surface of the HS. (a) Horizontal displacement. (b) Vertical displacement **,
Lamb's Solution; } } }} } , (x/b)"6; } - - }, (x/b)"9.

Figure 5. Space and time variations of the load applied on a half-space.
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point B (22)86, 22)86 m) obtained by the present method as a special case of the general
formulation for multilayered viscoelastic media are given in Figures 6 and 7 respectively.
The results obtained previously by Israil and Banerjee [52] and Birgissan and Crouch [53]



Figure 6 Time variation of the vertical displacement at point G(45)74, 3)05m). **, Present; } }e} }, Israil
& Banerjee; } - - }, Birgisson & Crouch.

Figure 7. Time variation of q
22

at point B(22)86, 22.86 m). **, Present; } }e} }, Israil & Banerjee; } - - },
Birgisson & Crouch.
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by employing a time-domain direct boundary element method are also presented in Figures
6 and 7. Very good agreement is observed between the curves.

The next example of veri"cation involves an elastic layer overlaying an elastic HS with
di!erent shear moduli k

1
and k

2
, all other properties remaining the same. The portion of the

top surface of width 2b is subjected to a uniform load with the triangular pulse in time as
shown in Figure 8. The depth of the upper layer is H"3b. The rise time of the pulse is
t
r
"0)5437b/c

s
, where c

s
is the shear-wave velocity in the upper layer. Three di!erent cases

are studied with the ratios of shear moduli: k
1
/k

2
"1, 0)5, and 0.25. The vertical

displacements at the location P(x
1
/b"5, x

2
"0) obtained by the present analysis are given

in Figure 9. The corresponding solutions obtained by the time-domain boundary element
method [51] are also presented in Figure 9, showing a good agreement between the curves
found by the two di!erent methods.



Figure 8. Space and time variations of the load applied on a layer overlaying a half-space.

Figure 9. Time variations of the vertical displacements at point P (x
1
/b"5, x

2
"0) for di!erent ratios of shear

moduli. (a) k
1
/k

2
"1; (b) k

1
/k

2
"0)5; (c) k

1
/k

2
"0)25. **, Present; } }e} }, BEM.
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Figure 10. Space variation of the load applied on a viscoelastic layer overlaying an elastic half-space.

Figure 11. Space variations of the normal stress (q
22

/p
0
) at non-dimensional times tM"1)2, 1)4, 1)6, 1)8 and 2)0.
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In the last example of veri"cation, a viscoelastic layer overlaying an elastic HS is
considered. The viscoelastic layer is modelled as a standard linear solid, i.e., n"1 is taken in
equations (2.3) and (2.6). The top surface of the viscoelastic layer is subjected to normal
surface tractions with a trapezoidal distribution in the x

1
direction and a half-sine pulse,

g(t)"p
0
sin(5nt)H(t)H(0)2!t), in time: see Figure 10. The width of the applied load,

a"32h and b"2)5 h, is taken much larger than the depth of the top layer, so that the
two-dimensional solution can simulate a one-dimensional solution where the whole top
surface is subjected to uniform surface tractions. The viscoelastic properties of the top layer
are taken as a(1)

0
"a(1)

1
"b(1)

0
"b(1)

1
"0)5 and q(1)

1
"f(1)

1
"0)25, where the superscripts 1 in

parentheses imply that the corresponding quantities pertain to layer 1, the upper layer. The
bottom HS characterized by the superscript 2, is assumed to be elastic with a(2)

0
"b(2)

0
"1)0

and c(2)
p
"2c(1)

p
. Since our analysis is two-dimensional, we should also have shear-wave

velocities, which are chosen as c(1)
s
"J1/3 c(1)

p
and c(2)

s
"J2/3 c(1)

p
. The variations of

the non-dimensional normal stress q
22

/p
0

with position xN
2
"x

2
/h at di!erent times is

presented in Figure 11. The same problem was solved by Jiang and Haddow [32] by a "nite
element method and method of characteristics as a one-dimensional problem; their results
coincide with those displayed in Figure 11. There is perfect agreement between the two
solutions.



Figure 12. Space and time variations of the surface tractions applied on the top surface of the multilayered media.
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We now present some results for multilayered viscoelastic media with two discrete
relaxation times, i.e., n"2 is taken in equations (2.3) and (2.6). In the numerical
computations, the top surface is assumed to be subjected to normal surface tractions and
the bottom surface is "xed, i.e., the boundary conditions are as given by equations (2.10) and
(2.13). Furthermore, the time and x

1
variations of p (x

1
, t) are taken in the form

p"p
0
f (x

1
)g (t), (4.1)

where p
0

is the intensity of the applied normal stresses, and the functions f (x
1
) and

g(t) describe trapezoidal distributions with respect to x
1

and t, respectively, as shown in
Figure 12. The function g(t) has a "nite time duration (e#2d). Spacewise, f is a strip load of
the width (a#2b) acting between the points x

1
"G(a/2#b). The &&e'' and &&d'' values (see

Figure 12) are chosen to be

e"0)4¹, d"0)2¹, (4.2)

where ¹ is a characteristic time de"ned by ¹"h/c(1)
s

in which h is a characteristic length
and c(1)

s
is the shear-wave velocity pertaining to the top layer.

Two di!erent sets of values are assigned to a and b (see Figure 12). The "rst one is

a"2h, b"0)5h, (4.3)

for which the width of the strip load becomes comparable with the characteristic length. The
second set is

a"20h, b"5h, (4.4)

which corresponds to the case in which the width of the strip load becomes very large
compared to the characteristic length.

The numerical computations have been carried out and the results are displayed in terms
of non-dimensional quantities. These dimensionless quantities are de"ned as

xN
i
"

x
i

h
, tN"

tc(1)
s
h

, oN
j
"

o
j

o
1

,

(qN
11

, qN
22

, qN
12

)"
1

k
1

(q
11

, q
22

, q
12

), cN ( j)
p
"

c ( j)
p

c(1)
s

,

cN ( j)
s

"

c ( j)
s

c(1)
s

, kN
j
"

k
j

k
1

, jM
j
"

j
j

k
1

,

(qN ( j)
m

, fM ( j)
m

)"
c(1)
s
h

(q ( j)
m

, f ( j)
m

) (m"1, 2),



Figure 13. Time variation of the normal stress (q
22

/p
0
) at xN

1
"0, xN

2
"1 when the width of the strip load is very

large compared to the thickness of the laminate. **, Elastic; - - - - - , viscoelastic 1; } }e} }, viscoelastic 2.
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uN ( j)
i
"

u ( j)
i
h

, vN ( j)
i
"

l ( j)
i

c(1)
s

, AM (j)
i
"

A ( j)
i

h

(c (1)
s

)2
, (i"1!2; j"1, 2, 3,2,N), (4.5)

where the non-dimensional quantities are designated by bars. The subscript j or the
superscript j in parentheses denotes the quantity belonging to the jth layer. Furthermore,
o
1
, k

1
, c (1)

s
are the mass density, impact shear modulus and shear-wave velocity of the top

layer respectively. In the computations, the intensity of the applied normal stress is chosen
as pN

0
"p

0
/k

1
"1.

In Figure 13, the variation of the dimensionless normal stress q
22

/p
0

with time t6 at the
location xN

1
"0, xN

2
"1)0 of a multilayered medium consisting of four layers is shown. The

characteristic length h in this example is chosen as the thickness of the multilayered
medium. The surface pressure is de"ned by equations (4.1) (4.2) and (4.4), implying that the
width of the strip load is very large compared to the laminate thickness. The thicknesses and
material properties of the four layers are assumed to be the same. Two sets of material
properties are assumed for the layers of the viscoelastic laminate. The "rst set is

a
0
"b

0
"0)8, a

1
"a

2
"b

1
"b

2
"0)1, qN

1
"fM

1
"1, qN

2
"fM

2
"2. (4.6)

The second set is selected as

a
0
"b

0
"0)4, a

1
"a

2
"b

1
"b

2
"0)3, qN

1
"fM

1
"1, qN

2
"fM

2
"2. (4.7)

For both sets, we choose

jM "2. (4.8)

Note that, in view of the non-dimensionalization we are using in the study, we also have

kN "1, oN "1, hM
i
"h

i
/h"0)25 (i"1!4) (4.9)

As the material properties of all four layers are taken to be same, the curves in Figure 13
represent solutions for a single elastic or viscoelastic layer with a non-dimensional thickness
HM "1. Since the width of the applied load is very large compared to the thickness of the



Figure 14. Time variation of the normal stress (q
22

/p
0
) at xN

1
"0, xN

2
"1 for a"2h, b"0)5h. **, Elastic;

- - - - - , viscoelastic 1; }}e} }, viscoelastic 2.
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layer, the problem is approximately one-dimensional, for which the exact elasticity solution
is available. The elastic solution in Figure 13 is obtained by treating the problem as
two-dimensional, which agrees very well with the exact. This provides further con"dence
about the accuracy of the numerical technique used in the study. The curves for the
viscoelastic materials 1 and 2 clearly display, in the wave pro"les, the e!ects of viscous
damping, which is more pronounced for material 2.

In Figure 14, the variation of q
22

/p
0
with time tN at the location xN

1
"0, xN

2
"1)0 of a single

layer is displayed. In this example, the characteristic length h is chosen as one-fourth of the
layer thickness, i.e., h"H/4. Two sets of material properties as de"ned by equations
(4.6)}(4.8) are assumed for the viscoelastic layer. The time and x

1
-distributions of the strip

load applied at the top surface is chosen as given by equations (4.1)}(4.3). Note that the
width of the applied strip load in this case is comparable with the layer thickness. The elastic
solution is also given in Figure 14 for comparison. The curves of Figure 14 clearly show the
e!ects of re#ections at the top and bottom surfaces through the sudden changes in the stress
levels. The sharp variations at the wave fronts are properly accounted for. The attenuation
in the wave pro"les due to viscous damping, more pronounced for smaller values of a

0
and

b
0
, is apparent in the curves. The damping e!ects become dominant for large times.

Furthermore, in Figure 14, the scattering and radiation e!ects may be clearly observed,
which are due to inclined waves re#ected at layer boundaries. This is more apparent in the
elastic case, in which the stress peak values decrease as time increases.

The time variations of the non-dimensional stress q
22

/p
0

and displacement uN
2

with time
tN at di!erent locations of multilayered viscoelastic media consisting of four layers are
displayed in Figures 15}17. The multilayered media consist of two pairs of alternating
layers, denoted as layers 1 and 2, with the layer sequence, starting from the top, as 1/2/1/2.
All the layers have equal thicknesses. The characteristic length h used in
non-dimensionalization is taken as equal to the layer thickness. Two di!erent multilayered
viscoelastic media, named as I and II, are considered. For medium I, layers 1 and 2 have the
same viscoelastic properties which are given by equation (4.6). Furthermore, we have
hM
i
"h

i
/h"1 and choose o6

i
"1, jM

i
"2 (i"1!2) for both layers. The only di!erence

between the layers is that we take k6
1
"1 and kN

2
"2. For medium II, all the properties are

the same as laminate I except that the viscoelastic material properties are now given by



Figure 15. Time variation of the normal stress (q
22

/p
0
) at xN

1
"0, xN

2
"2)5 for the multilayered media with two

pairs of alternating layers. **, Elastic; - - - - - , viscoelastic I; } }r}}, viscoelastic II.

Figure 16. Time variation of the normal stress (q
22

/p
0
) at xN

1
"1)6, xN

2
"2)5 for the multilayered media with two

pairs of alternating layers. **, Elastic; - - - - - , viscoelastic I; } }r}}, viscoelastic II.
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equation (4.7). The top surfaces of the laminates are subjected to normal strip loads whose
time and x

1
-distributions are de"ned by equations (4.1)}(4.3). For the elastic case, the two

multilayered media reduce to the same laminate in which hM
i
"1, o6

i
"1, jM

i
"2 (i"1}2) and

k6
1
"1, k6

2
"2 for the layers 1 and 2 of the laminate. The width of the strip load in this

problem is comparable with the thickness of the laminate. The curves of Figure 15 denoting
the time variations of q

22
/p

0
at the location (xN

1
"0, xN

2
"2)5) clearly display the e!ects of

re#ections from the top and bottom surfaces, re#ections and refractions from the interfaces
of the layers and the e!ects of viscous damping. Damping is more dominant in viscoelastic
laminate II. The normal stress q

22
/p

0
basically dies out for tM'16 for viscoelastic laminate

II. The sharp variations in the stress levels for the elastic laminate are gradually smoothed
out by viscous damping in the case of viscoelastic laminates, more distinct for laminate II
and for large times. In Figure 16, the time variation of q

22
/p

0
at the location (xN

1
"1)6,



Figure 17. Time variation of the vertical displacement (k
1
u
2
/p

0
h
1
) at xN

1
"7)5, xN

2
"0 for the multilayered media

with two pairs of alternating layers. **, Elastic; - - - - - , viscoelastic I; } }r} }, viscoelastic II.
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xN
2
"2)5) is shown. The curves in this "gure exhibit similar trends; the stress peak values,

however, are smaller due to the location of the observation point.
Finally, in Figure 17, the variations of the dimensionless displacement component uN

2
with

time tN at the location A (xN
1
"7)5, xN

2
"0) are shown. Note that the point A is on the top

surface and away from the loading region. From the "gure one can see that the point A is
"rst disturbed from the rest at the time of arrival of the dilatational P wave. Then, a sharp
signi"cant change occurs in the displacement at a later time, denoted by point RW, which
can be interpreted as due to the arrival of surface waves. Similar trends observed in Figures
15 and 16 due to re#ections, refractions and viscous damping are displayed in these curves
as well.

REFERENCES

1. W. M. EWING, W. S. JARDETSKY and F. PRESS 1957 Elastic=aves in ¸ayered Media. New York:
McGraw-Hill.

2. L. M. BREKHOVSKIKH 1960 =aves in ¸ayered Media. New York: Academic Press.
3. C. T. SUN, J. D. ACHENBACH and G. HERRMANN 1968 American Society of Mechanical Engineers

Journal of Applied Mechanics 35, 467}475. Continuum theory for a laminated medium.
4. J. D. ACHENBACH, C. T. SUN and G. HERRMANN 1968 American Society of Mechanical Engineers

Journal of Applied Mechanics 35, 689}696. On the vibrations of a laminated body.
5. Y. MENGI 1980 International Journal of Solids and Structures 16, 1155}1168. A new approach for

developing dynamic theories for structural elements Part 1. Application to thermoelastic plates.
6. Y. MENGI, G. A. BIRLIK and H. D. MCNIVEN 1980 International Journal of Solids and Structures

16, 1169}1186. A new approach for developing dynamic theories for structural elements Part 2.
Application to thermoelastic layered composites.

7. F. SANTOSA and W. W. SYMES 1991 SIAM Journal of Applied Mathematics 51, 984}1005.
A dispersive e!ective medium for wave propagation in periodic composites.

8. C. T. SUN, J. D. ACHENBACH and G. HERRMANN 1968 American Society of Mechanical Engineers
Journal of Applied Mechanics 35, 408}411. Time-harmonic waves in a strati"ed medium
propagating in the direction of the layering.

9. T. J. DELPH, G. HERRMANN and R. K. KAUL 1979 American Society of Mechanical Engineers
Journal of Applied Mechanics 46, 113}119. Harmonic wave propagation in a periodically layered
in"nite elastic body: plane strain, analytical results.



WAVES IN VISCOELASTIC LAYERED MEDIA 857
10. T. J. DELPH, G. HERRMANN and R. K. KAUL 1980 American Society of Mechanical Engineers
Journal of Applied Mechanics 47, 531}537. Harmonic wave propagation in a periodically layered
in"nite elastic body: plane strain, numerical results.

11. A. M. B. BRAGA and G. HERRMANN 1992 Journal of the Acoustical Society of America 91,
1211}1227. Floquet waves in anisotropic periodically layered composites.

12. G. R. LIU, J. TANI, K. WATANABE and T. OHYOSHI 1990 American Society of Mechanical
Engineers Journal of Applied Mechanics 57, 923}929. Lamb wave propagation in anisotropic
laminates.

13. C. CETINKAYA and A. F. VAKAKIS 1995 Journal of Sound and <ibration 182, 283}302. Transient
axisymmetric stress wave propagation in weakly coupled layered structures.

14. C. CETINKAYA, J. BROWN, A. A. F. MOHAMMAD and A. F. VAKAKIS 1997 International Journal for
Numerical Methods in Engineering 40, 1639}1665. Near "eld transient axisymmetric waves in
layered structures: e!ects of weak coupling.

15. S. A. RIZZI and J. F. DOYLE 1992 Journal of <ibration and Acoustics 114, 569}577. A spectral
element approach to wave motion in layered solids.

16. T. KUNDU and A. K. MAL 1985=ave Motion 7, 459}471. Elastic waves in a multilayered solid due
to a dislocation source.

17. A. K. MAL 1988 =ave Motion 10, 257}266. Wave propagation in layered composite laminates
under periodic surface loads.

18. A. K. MAL and S. S. LIH 1992 American Society of Mechanical Engineers Journal of Applied
Mechanics 59, 878}886. Elastodynamic response of a unidirectional composite laminate to
concentrated surface loads. Part I.

19. S.-S. LIH and A. K. MAL 1992 American Society of Mechanical Engineers Journal of Applied
Mechanics 59, 887}892. Elastodynamic response of a unidirectional composite laminate to
concentrated surface loads. Part II.

20. S.-S. LIH and A. K. MAL 1996 Composites Part B 27B, 633}641. Response of multilayered
composite laminates to dynamic surface loads.

21. Z. JIANFENG and L. YOUMING 1997=ave Motion 25, 109}125. Numerical simulation of elastic
wave propagation in inhomogeneous media.

22. G. R. LIU, J. TANI, T. OHYOSHI and K. WATANABE 1991 Journal of <ibration and Acoustics 113,
230}234. Transient waves in anisotropic plates, Part I. Theory.

23. G. R. LIU, J. TANI, T. OHYOSHI and K. WATANABE 1991 Journal of <ibration and Acoustics 113,
235}239. Transient waves in anisotropic laminated plates, Part 2. Application.

24. M. TYGEL and P. HUBRAL 1987 ¹ransient=aves in ¸ayered Media. Amsterdam: Elsevier Press.
25. J. D. ACHENBACH 1987 =ave Propagation in Elastic Solids. New York: North-Holland.
26. J. MIKLOWITZ 1984 ¹he ¹heory of Elastic=aves and=ave Guides. New York: North- Holland.
27. A. H. NAYFEH 1995=ave Propagation in ¸ayered Anisotropic Media. Amsterdam: North-Holland.
28. J. H. M. T. VAN DER HIJDEN 1987 Propagation of ¹ransient Elastic =aves in Strati,ed

Anisotropic Media. Amsterdam: North-Holland.
29. T. C. T. TING and I. MUKUNOKI 1979 American Society of Mechanical Engineers Journal of

Applied Mechanics 46, 329}336. A theory of viscoelastic analogy for wave propagation normal to
the layering of a layered medium.

30. T. C. T. TING 1980 International Journal of Solids and structures 16, 903}911. The e!ects of
dispersion and dissipation on wave propagation in viscoelastic layered composites.

31. G. A. BIRLIK and Y. MENGI 1987 Journal of Sound and <ibration 113, 141}153. Transient wave
propagation in a viscoelastic layered composite*an approximate theory.

32. L. JIANG and J. B. HADDOW 1995 Journal of Sound and <ibration 184, 429}438. A "nite element
solution of plane wave propagation in inhomogeneous linear viscoelastic solids.

33. D. NKEMZI and W. A. GREEN 1994 Acta Mechanica 102, 167}182. Transient wave propagation in
a viscoelastic sandwich plate.

34. P.-C XU and A. K. MAL 1987 Bulletin of the Seismological Society of America 77, 1821}1837.
Calculation of the in-plane Green's function for a layered viscoelastic solid.

35. S. C. CHOU and R. GREIF 1969 American Institute of Aeronautics and Astronautics Journal 6,
1067}1074. Numerical solution of stress waves in layered media.

36. D. TURHAN and Y. CALAYIDR 1991 in Structural Dynamics: Recent Advances (M. Petyt, H. G. Wolfe
and C. Mei, editors) 353}362. London: Elsevier. Transient dynamic response of viscoelastic
layered composites.

37. D. TURHAN, Z. CELEP and I. K. ZEIN-EDDEN 1991 Journal of Sound and <ibration 144, 247}261.
Transient wave propagation in layered media conducting heat.



858 I. ABU ALSHAIKH E¹ A¸.
38. Y. MENGI and A. K. TANRIDKULU 1990 Communications in Applied Numerical Methods 6, 623}632.
A numerical technique for two-dimensional transient wave propagation analyses.

39. A. K. TANRIDKULU, Y. MENGI and D. TURHAN 1992 Applied Acoustics 37, 199}212. Propagation
of out-of-plane shear waves in an elastic layer.

40. Y. MENGI and D. TURHAN 1984 Journal of Sound and <ibration 92, 311}320. A higher order
dynamic theory for viscoelastic plates and layered composites.

41. Y. C. FUNG 1965 Foundations of Solid Mechanics. Englewood Cli!s, NJ: Prentice-Hall.
42. L. E. MALVERN 1969 Introduction to Mechanics of a Continuous Media. New Jersey: Prentice-Hall.
43. J. L. WEGNER and J. B. HADDOW 1989 International Journal of Engineering Sciences 27,

1545}1551. A note on plane wave propagation in a linear viscoelastic solid.
44. J. L. WEGNER 1993 International Journal of Engineering Sciences 31, 493}508. Propagation of

waves from a spherical cavity in an unbounded linear viscoelastic solid.
45. R. COURANT and D. HILBERT 1966 Methods of Mathematical Physics, Volume II. New York:

Interscience Publishers.
46. G. B. WHITHAM 1974 ¸inear and Nonlinear=aves. New York: Wiley.
47. H. D. MCNIVEN and Y. MENGI 1971 International Journal of Solids and Structures 7, 979}992.

Propagation of transient, cylindrical waves in an in"nite, viscoelastic body.
48. E. O. BRIGHAM 1974 ¹he Fast Fourier ¹ransform. Englewood Cli!s, NJ: Prentice-Hall.
49. J. W. COOLEY, P. A. LEWIS and P. D. WELCH 1969 IEEE ¹ransactions, Education 12, 27}34. The

fast Fourier transform and its applications.
50. H. LAMB 1904 Philosophical ¹ransactions of the Royal Society of ¸ondon, Series A203, 1}42. On

the propagation of tremors over the surface of an elastic solid.
51. A. S. M. ISRAEL and P. K. BANERJEE 1990 International Journal of Solids and Structures 26,

851}864. Two-dimensional transient wave-propagation problems by time-domain BEM.
52. A. S. M. ISRAEL and P. K. BANERJEE 1990 International Journal for Numerical Methods in

Engineering 29, 1421}1440. Advanced time-domain formulation of BEM for two-dimensional
transient elastodynamics.

53. B. BIRGISSON and S. L. CROUCH 1998 International Journal for Numerical Methods in Engineering
42, 1045}1069. Elastodynamic boundary element method for piecewise homogeneous media.


	1. INTRODUCTION
	2. FORMULATION OF THE PROBLEM
	Figure 1

	3. SOLUTION OF THE PROBLEM
	Figure 2

	4. NUMERICAL RESULTS AND DISCUSSIONS
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17

	REFERENCES

